Birzeit University
Faculty of Engineering and Technology
Department of Electrical and Computer Engineering
Communication Systems ENEE 339
Final Exam

Instructors: Dr. Wael Hashlamoun, Dr. Mohammad Jubran Date: June 12, 2017

Problem 1: 20 Points

Let $m(t)$ be a baseband signal defined as

$$
m(t)=\left\{\begin{array}{cc}
0.5 & -1 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right\} .
$$

a. Find the energy in $m(t)$.
b. Find the Null-to-Null Bandwidth of $m(t)$.
c. If $m(t)$ is applied to an FM modulator with a sensitivity constant $k_{f}=$ $10 \mathrm{~Hz} / V$ along with the carrier $4 \cos (2 \pi \times 20 \times t)$ to produce the modulated signal $s(t)$. Find and sketch the instantaneous frequency of $s(t)$ for $-3 \leq t \leq$ 3.

Problem 2: 20 Points

The communication system shown in figure 1 below is designed such that the passband bandwidth of the Low Pass filter is 4 KHz and the sampling frequency (fs) of 8 KHz . The signal $m(t)=2 \cos (2 \pi \times 3000 \times t)+4 \cos (2 \pi \times 6000 \times t)$ is applied to the input of the system. Answer the following questions assuming ideal filters are used.

Figure 1: Block diagram of communication system for Problem 2
a. Find the signal filtered signal $m_{f}(t)$.
b. Plot the amplitude spectrum of the filtered signal $m_{f}(t)$.
c. Plot the amplitude spectrum of the sampled signal $m_{s}(t)$.
d. What is the type of the Reconstruction filter at the receiver?
e. What is the passband bandwidth of the Reconstruction filter at the receiver?
f. Write down the reconstructed signal $m_{R}(t)$ at the output of the receiver in the time domain.

Problem 3: 20 Points

The waveform $m(t)$ shown in Figure 2.a is a segment of a voice speech signal that has a maximum frequency component at 4 KHz . The dynamic range of the Uniform quantizer is from -2 to 2 volts. Assume the waveform is processed as described in the block diagram shown in figure 2.b, answer the following:
a. Determine the sampled signal values; $\mathrm{m}_{\mathrm{s}}(\mathrm{nT})$ for $0 \leq t \leq 0.5$.
b. Determine the quantized signal values; $\mathrm{m}_{\mathrm{q}}(\mathrm{nT})$ for $0 \leq t \leq 0.5$.
c. Determine the binary signal values at the output of the 2 bit encoder for the quantized samples of part $b\left(m_{b}\right)$,
d. Determine the output bit rate at the quatizer output in bits per second; $\left(\mathrm{R}_{\mathrm{b}}\right)$,
e. If the binary data of Part c are transmitted using binary phase shift keying, find the required transmission bandwidth.

Figure 2.a: $\mathrm{m}(\mathrm{t})$ waveform

Figure 2.b: PCM system

Problem 4: 20 Points

The binary digital communication signaling scheme, discussed in class, employs the following two equally probable signals $s_{1}(t)$ and $s_{2}(t)=-s_{1}(t)$ to represent binary logic 1 and 0 respectively over a channel corrupted by AWGN with power spectral density $N_{0} / 2 \mathrm{~W} / \mathrm{Hz}$. Here,
$s_{1}(t)=\left\{\begin{array}{rr}A \frac{2 t}{\tau}, & 0 \leq t \leq \tau / 2 \\ A, & \tau / 2 \leq t \leq \tau\end{array}\right.$
Where τ is the binary symbol duration.

a. Find and sketch the impulse response, $h(t)$, of the matched filter, designed to minimize the system probability of error.
b. Find the optimum threshold used at the receiver
c. Sketch the optimum receiver highlighting its basic components

Problem 5: 20 Points

The binary orthogonal frequency shift keying (FSK) signaling scheme, discussed in class, employs the following two equally probable signals $s_{1}(t)$ and $s_{2}(t)$ to represent binary logic 1 and 0 respectively over a channel corrupted by AWGN with power spectral density $N_{0} / 2 \mathrm{~W} / \mathrm{Hz}$:

$$
\begin{gathered}
s_{1}(t)=4 \cos \left(2 \pi f_{1} t\right), \quad 0 \leq t \leq \tau \\
s_{2}(t)=4 \cos \left(2 \pi f_{2} t\right), 0 \leq t \leq \tau
\end{gathered}
$$

where $f_{1}=n R_{b}, f_{2}=m R_{b}, R_{b}=1 / \tau$, and n and m are integers.
a. Find the system average probability of error
b. If the bit error probability is not to exceed 8.8417×10^{-5}, find the maximum allowable data rate $R_{b}=1 / \tau$ if $N_{0}=0.001$ (use the attached Q-function table)
c. Find the 90% bandwidth when $f_{1}=8 \mathrm{KHz}, f_{2}=2 \mathrm{KHz}$, and $R_{b}=1 \mathrm{Kbps}$

```
TABLE A6.4 Trigonometric Identities
exp(\pmj0)= cos 0\pmj\operatorname{sin}0
cos}0=\frac{1}{2}[\operatorname{exp}(j0)+\operatorname{exp}(-j0)
sin}0=\frac{1}{2j}[\operatorname{exp}(j0)-\operatorname{exp}(-j0)
\mp@subsup{\operatorname{sin}}{}{2}0+\mp@subsup{\operatorname{cos}}{}{2}0=1
\mp@subsup{\operatorname{cos}}{}{2}0-\mp@subsup{\operatorname{sin}}{}{2}0=\operatorname{cos}(20)
\mp@subsup{\operatorname{cos}}{}{2}0=\frac{1}{2}[1+\operatorname{cos}(20)]
\mp@subsup{\operatorname{sin}}{}{2}0=\frac{1}{2}[1-\operatorname{cos}(20)]
2 sin}0\operatorname{cos}0=\operatorname{sin}(20
sin}(\alpha\pm\beta)=\operatorname{sin}\alpha\operatorname{cos}\beta\pm\operatorname{cos}\alpha\operatorname{sin}
cos(\alpha\pm\beta)= cos \alpha cos \beta\mp sin \alpha \operatorname{sin}\beta
tan(\alpha\pm\beta)=\frac{\operatorname{tan}\alpha\pm\operatorname{tan}\beta}{1\mp\operatorname{tan}\alpha\operatorname{tan}\beta}
sin}\alpha\operatorname{sin}\beta=\frac{1}{2}[\operatorname{cos}(\alpha-\beta)-\operatorname{cos}(\alpha+\beta)
cos}\alpha\operatorname{cos}\beta=\frac{1}{2}[\operatorname{cos}(\alpha-\beta)+\operatorname{cos}(\alpha+\beta)
sin}\alpha\operatorname{cos}\beta=\frac{1}{2}[\operatorname{sin}(\alpha-\beta)+\operatorname{sin}(\alpha+\beta)
TABLE A6.2 Fourier-Transform Pairs
\begin{tabular}{|c|c|}
\hline Time Function & Fourier Transform \\
\hline \[
\operatorname{rect}\left(\frac{t}{T}\right)
\] & \(T\) sinc \((f T)\) \\
\hline \(\operatorname{sinc}(2 W t)\) & \(\frac{1}{2 W} \operatorname{rect}\left(\frac{f}{2 W}\right)\) \\
\hline \(\exp (-a t) u(t), \quad a>0\) & \[
\frac{1}{a+j 2 \pi f}
\] \\
\hline \(\exp (-a|t|), \quad a>0\) & \[
\frac{2 a}{a^{2}+(2 \pi f)^{2}}
\] \\
\hline \(\exp \left(-\pi t^{2}\right)\) & \(\exp \left(-\pi f^{2}\right)\) \\
\hline \[
\begin{cases}1-\frac{|t|}{T}, & |t|<T \\ 0, & |t| \geq T\end{cases}
\] & \(T \operatorname{sinc}^{2}(f T)\) \\
\hline \(\delta(t)\) & 1 \\
\hline 1 & \(\delta(f)\) \\
\hline \(\delta\left(t-t_{0}\right)\) & \(\exp \left(-j 2 \pi f t_{0}\right)\) \\
\hline \(\exp \left(j 2 \pi f_{c} t\right)\) & \(\delta\left(f-f_{c}\right)\) \\
\hline \(\cos \left(2 \pi f_{c} t\right)\) & \(\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]\) \\
\hline \(\sin \left(2 \pi f_{c} t\right)\) & \[
\frac{1}{2 j}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right.
\] \\
\hline \(\operatorname{sgn}(t)\) & \(\frac{1}{j \pi f}\) \\
\hline \(\frac{1}{\pi t}\) & \(-j \operatorname{sgn}(f)\) \\
\hline \(u(t)\) & \[
\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}
\] \\
\hline \[
\sum_{i=-\infty}^{\infty} \delta\left(t-i T_{0}\right)
\] & \(\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T_{0}}\right)\) \\
\hline
\end{tabular}
```

solution to Final Exam

Problem 1 $m(t)=\left\{\begin{array}{cc}0.5 & -1,<t \leqslant 1 \\ 0 & 0 . w\end{array}\right.$

$$
\begin{aligned}
a \cdot E & \left.=\int_{-1}^{1}(m / t)\right)^{2} d t=\int_{-1}^{1}(0.5)^{2} d t \\
& =0.5
\end{aligned}
$$

b. $m(t)=\Delta \operatorname{rect}\left(\frac{t}{f}\right) \Rightarrow M(f)=A T \operatorname{sinc} f T$

$$
\begin{aligned}
& A=0.5 \\
& T=2
\end{aligned}
$$

$$
\Rightarrow M(f)=(0.5)(2) \operatorname{sinc}(2 f)
$$

$$
B \cdot W=\frac{1}{T}=\frac{1}{2}
$$

Problem 2

$$
m(t)=2 \cos (2 \pi(3000) t)+4 \cos (2 \pi 16000 t)
$$

a. $m_{f}(t)=2 \cos (2 \pi(3000 t)$

$$
M_{f}(f)
$$

b. $M_{f}(f)=\delta(f-3000)+\delta(f+3000)$
c. $M(f)=\frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} M_{f}\left(f-k f_{s}\right)$

d. Reconstruction Filter: Low pass filter
e. $3000<3 \cdot W<5000$
f. $m_{R}(t)=f_{s} m_{f}(t)$

$$
m_{8}(t)=(8000)^{s}(2) \cos 2 \pi(3000) t
$$

Problem 3

-15

d. $R_{b}=\left(f_{s}\right)(\#$ of bits $/$ quantized sample)

$$
\begin{aligned}
& =2 \times 4000 \times 2=16,000 \text { bits } / \mathrm{sec} \\
& =2 \times 501000
\end{aligned}
$$

e.

$$
\begin{aligned}
B, W & =2 \times R_{b} \\
& =2 \times 16,000=32,000 \mathrm{HZ}
\end{aligned}
$$

Problem 4
a. $h(H)=s_{1}(\tau-t)-s_{2}(\tau-t)$

$$
b \cdot \stackrel{*}{\lambda}=\frac{1}{2}\left(E_{1}-E_{2}\right)
$$

since $E_{1}=E_{2}$

$$
\Rightarrow \lambda^{*}=0
$$

Find E_{1}

$$
\begin{aligned}
E_{1} & =\int_{0}^{\tau / 2}\left(A \frac{2 t}{\tau}\right)^{2} d t+\int_{\tau / 2}^{\tau} A^{2} d t \\
& =\frac{1}{6} A^{2} \tau+A^{2} \frac{\tau}{2} \\
E_{1} & =\frac{2}{3} A^{2} \tau
\end{aligned}
$$

sample at $t=\tau$

Problem 5

$$
\begin{array}{ll}
S_{1}(t)=4 \cos 2 \pi f_{1} t & 0 \leqslant t \leqslant r \\
s_{2}(t)=4 \cos 2 \pi f_{2} t & 0 \leqslant t \leqslant r
\end{array}
$$

$a \cdot P(E)=Q\left(\sqrt{\frac{\int_{0}^{\tau}\left(s_{1}(t)-s_{2}(t)\right)^{2}}{2 N_{0}}}\right)$

$$
\begin{aligned}
\int_{0}^{\tau}\left(s_{1}(t)-s_{2}(t)\right)^{2} d t & =\int_{0}^{\tau} s_{1}(t)^{2} d t+\int_{0}^{\tau} s_{2}(t)^{2} d t-2 \int_{0}^{\tau} s_{1}(t) s_{2}(t) d t \\
& =A^{2} \frac{\tau}{2}+A^{2} \frac{\tau}{2}=A^{2} \tau \\
P(E) & =Q\left(\sqrt{\frac{A^{2} \tau}{2 N_{0}}}\right)=Q\left(\sqrt{\frac{8 \tau}{N_{0}}}\right)
\end{aligned}
$$

b.

$$
\begin{aligned}
& P(E)=Q\left(\sqrt{\frac{8 \tau}{0.001}}\right) \leqslant 8.8417 \times 10^{-5} \\
& Q(x) \leqslant 8.8417 \times 10^{-5} \Rightarrow x=3.75 \\
& 3.75=\sqrt{\frac{8 \tau}{0.001}} \Rightarrow 14.0625=\frac{8 \tau}{0.001} \\
& \tau=1.7578 \times 10^{-3} \Rightarrow R_{b} \leqslant 569 \text { bits/sec }
\end{aligned}
$$

C.

$$
\begin{aligned}
B, W & =\left(f_{1}-f_{2}\right)+2 R_{b} \\
& =[(8-2)+2]^{K} \\
B, W & =8 K H z
\end{aligned}
$$

